英国上市公司官网365
设为首页    |   加入收藏
学术动态
当前位置: 首页>>科学研究>>学术动态>>正文

我校师生在《中国科学:信息科学》发表学术论文

发布日期:2023年09月09日 22:20 点击数:

      

       近日,英国上市公司官网365张啸剑教授与硕士研究生周丹、徐雅鑫以及中国科学院信息工程研究所林东岱研究员、浙江大学计算机科学与技术学院纪守领教授、中国人民大学信息学院孟小峰教授合作撰写的学术论文《基于层次结构的隐私多维分析查询算法》在《中国科学:信息科学》2023年第6期发表。

       人工智能技术的高速发展使得多维数据收集与分析变得尤为容易。通过收集与分析用户的个人数据可以改变企业产品与设备的服务质量, 向用户提供个性化服务。然而, 多维数据通常蕴含着丰富的个人敏感信息, 在提供给收集者或者第三方时,个人的敏感信息有可能被泄露。现有基于最优局部哈希(OLH: Optimal Local Hashing)机制与层次树结构的扰动方法存在泄漏根结点隐私的风险。针对现有结合层次树本地扰动机制的不足, 提出了一种有效且满足本地化差分隐私的MDA查询算法H4MDA, 该算法充分利用层次树的横向与纵向结构特征设计了三种基于用户分组策略的本地扰动算法HGRR,LGRR-FD以及LGRR。HGRR算法结合层次树横向结构与GRR机制本地扰动用户元组数据, 通过摈弃根结点组合来响应MDA查询。不同于HGRR算法, LGRR-FD算法利用层次树的纵向结构与GRR机制扰动本地数据,同时通过添加假数据来避免叶子结点的隐私泄露。LGRR算法通过摈弃叶子结点层纵向扰动本地数据。收集者结合LGRR算法的扰动结果利用局部一致性处理技术重构层次树最后两层, 通过添加虚拟叶子结点来响应MDA查询, 而虚拟叶子结点计数之和等于其父节点计数。HGRR, LGRR-FD以及LGRR算法与现有扰动算法在三种数据集上实验结果表明, 其响应MDA查询的精度优于同类算法。图2与图3是算法H4MDA的核心思想,图5是该算法的部分实验效果。

       《中国科学:信息科学》是由中国科学院主管,中国科学院、国家自然科学基金委员会主办的期刊,是计算机科学与技术、控制科学与控制工程、通信与信息系统、电子科学与技术等多个领域的知名期刊,是中国计算机学会(CCF)-A类期刊,同时也是我校认定的特类期刊。

       论文信息:张啸剑, 周丹, 徐雅鑫, 林东岱, 纪守领, 孟小峰。基于层次结构的隐私多维分析查询算法。《中国科学:信息科学》,2023,https://www.sciengine.com/SSI/doi/10.1360/SSI-2022-0310



(一审:张粮瑞 二审:张晓静 三审:赵建永)